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I. INTRODUCTION 

In applied science and technology an important prob­

lem is that of estimating the behavior of a physical 

process subject to random disturbances and measurement 

errors in some manner which is "best" in the context of 

some performance criterion. Frequently the description 

of the process is in terms of a nonlinear stochastic 

differential equation and a nonlinear measurement proc­

ess. 

The state estimation problem for such a system is 

a formidable one both theoretically and practically. Two 

principal criteria have been used to judge the performance 

of a particular procedurei conditional mean and condi­

tional maximum-likelihood estimation. In conditional 

mean estimation the object is to design an estimator that 

produces an estimate which is the mean of the state condi­

tioned on the observations. Such an estimator minimizes 

the variance of the state conditioned on the observations. 

On the other hand, the goal of conditional maximum-

likelihood estimation is to maximize the probability density 

function of the state conditioned on the observations. 

Kushner [l] has determined the equations which are 

satisfied by the conditional mean and conditional covariance 

matrix. However, the conditional density function, which 
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is usually unknown, is required to implement the equations 

for a nonlinear system. 

In the maximum—likelihood approach two philosophies 

have been adopted. One is to compute the mode of the 

conditional density function, Kushner [2] has derived 

the equation for the mode, but as in the conditional mean 

approach, the unknown conditional density function is 

needed to implement it. The second approach, taken by 

Cox [3] and Mortensen [4], is to compute the most probable 

trajectory to be followed by the system. This is called 

the modal-trajectory estimator. The advantage of this 

approach is that optimal control techniques can be used 

to characterize the optimal estimator. However, problems 

similar to the ones above arise when it comes to imple­

menting the estimator. 

As one may have concluded by now, the best we can 

hope for in an application is to be able to find an ade­

quate approximation for the optimal estimator. Two trends 

have appeared in the efforts to find good approximations. 

Since the linear estimation problem has been solved 

by Kalman [s] and Kalman and Bucy [s], it is natural to 

attempt to approximate the nonlinear problem in such a way 

that the solution to the linear problem can be utilized, 

À brief statement of the linear problem and a summary of the 

Kalman-Bucy equations are provided for reference in the 
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Appendix, The algorithms which have resulted are the 

linearized, extended, and iterated extended Kalman filters, 

among others. In the linearized Kalman filter the system 

is linearized about a nominal trajectory and the Kalman 

filter is applied to this linearized model. In the extended 

Kalman filter the same linearization is used, but the 

linearization is performed about the most recent estimate 

obtained from the filter. The iterated extended Kalman 

filter is the same as the extended Kalman filter with the 

exception that an iterative procedure is employed at each 

step to improve the nominal trajectory by reducing the 

effects of measurement nonlinearities. 

The other approach is to approximate the nonlinear 

problem directly by assuming a density function or by 

attempting to parameterize the density function. Some of 

the results have been the second-order gaussian estimator 

and the truncated second-order estimator. The truncated 

second-order filter is obtained by assuming that third and 

higher order moments of the conditional distribution may 

be neglected. The second-order gaussian filter is obtained 

by assuming the conditional distribution to be gaussian 

and account for moments up to fourth-order by computing 

them in terms of the second-order moments. System non-

linearities are approximated to second-order. 

Surveys of the above mentioned algorithms and others 
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may be found in Jazwinski [?! and Sage and Melsa [s]. 

One of the problems with these approximate methods 

is that it is often difficult to justify the assumptions 

required by a particular algorithm. Also it is very 

difficult to ascertain the quality of performance which 

will result from the use of the algorithm. 

Another problem, which also plagues the Kalman filter, 

is that in many applications the dimension of the system 

may be large. Because of this, the computational and 

high-speed memory requirements of the algorithm may be 

excessive, particularly if real-time implementation via 

a small on-board computer is desired. 

In attempting to deal with these problems, we take a 

new approach to the approximation of the modal-trajectory 

estimator. By adopting the modal-trajectory approach we 

are able to utilize approximation methods from such areas 

as large-scale control (see Kokotovic and Singh [s]) and 

optimally sensitive control systems (see Werner and Cruz 

[lO]) to synthesize a new approximate modal-trajectory 

estimator. 

Our approach to the problem is formulated in the 

context of large interconnected systems. We will regard 

the system as a collection of interconnected subsystems. 

Our description of this composite system in Chapter II is 

a generalization of that used by Bailey [ll]. 
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Using the modal-trajectory approach Mortensen [4 ]  was 

able to obtain a nonlinear two-point boundary value problem 

(TPBVP) whose solution is the optimal modal-trajectory 

estimator. In Chapter III we derive an approximate algo­

rithm for solving this TPBVP using a method used by 

Werner and Cruz [lo] and others (see Kokotovic and Singh 

[9], Kokotovic and Sannuti [l2], and Cruz [l3]) to design 

optimally sensitive control systems. We will call this 

method the e-coupling technique. "Mie e-coupling technique 

together with the interconnected system formulation allows 

us to obtain an estimator with the following properties» 

(1) computations are carried out at the lower-

dimensional subsystem level, 

(2) the smoothing as well as the filtering solution 

is an integral component of the method, 

(3) a qualitative estimate of the performance of the 

algorithm can be obtained. 

In Chapter IV we re-derive in our formulation the 

e-coupling solution of Haddad and Cruz [l4] to the linear 

estimation problem. We also specialize our results in 

Chapter III to the linear case to obtain another e-coupling 

solution to the linear problem and state a theorem on the 

performance of the algorithms. 

At appropriate points in the exposition examples are 

presented to illustrate the employment of the algorithms 



www.manaraa.com

6 

and to demonstrate that the algorithms do work, A full 

computational study, however, is beyond the scope of this 

work. 
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II. DESCRIPTION OF AN INTERCONNECTED SYSTEM 

In this chapter we describe a class of interconnected 

systems which retains enough structural properties to enable 

us to obtain meaningful computational and theoretical 

results while being reasonably general. 

The class of systems which we describe is basically 

a generalization of that described by Bailey [llj. To 

Bailey's model we add plant and measurement noise and 

allow a nonlinear interconnection structure. In later 

chapters we shall actually deal with just two subclasses 

of the type of system described here. 

The basic unit of our composite system; i.e., inter­

connected system, is the subsystem. The subsystem is 

described by specifying its external inputs, its inter­

nal structure, and its outputs. The composite system 

may be described by specifying its external inputs, its 

subsystems and their interconnections, and its outputs. 

Suppose we have a composite system composed of s 

subsystems, 5^, i = 1, 2, . . ., s. Then each S^ may 

be described in the following manner. The state x^(t) 

of is determined at any time tefT^/Tg) by 

x^(t) c fj^(x^(t),t) + u^(t) + w\(t) (2.1) 
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where maps E^ix E^ into E^i, u^(t)GE*i is the input 

into at t, and w\(t)GE^i is a white noise disturbance 

process. E^^ denotes the n^-dimensional Euclidean vector 

space, where n^ is the dimension of S^, Equation (2,1) is 

to be interpreted in the sense of Stratonovich (see e.g. 

Jazwinski [?]). 

The output of is given by 

z^(t) = g%(x\(t),t) (2.2) 

where g^(*) maps E^^X E^ into E^i. 

The relationships among the subsystems are given by 

s 

u^(t) = ^b^ j(zj(t) ,t) + K^(t)u(t) (2.3) 

j=l 

where b^j(',") maps E^^X E^ into E^i, K^(*) maps E^ into 

the space of n^X matrices, and u(t)eE^ is the external 

input of the composite system. 

The assumption is made that the internal structure 

of the individual subsystems is not affected by the inter­

connection with other subsystems. In other words, we make 

the usual "no loading" assumption. It may appear that the 

assumption of noise-free connections between subsystems 

has been made. However, the effects of noisy connections 

can be accounted for in the w^ terms because surely in 

practical systems the connections between subsystems are 
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not noise-free. 

The plant description of the composite system can be 

obtained by combining equations (2.1) - (2.3). Denote by 

x(t)eE^lx E^2x , , , X the composite system state at 

time t; i.e., 

X* — (x^yx^, • . •t Xg)* 

where the prime denotes transpose. Then 

x(t) = f(x,t) + c(x,t) + K(t)u(t) + w(t) (2.4) 

where 

f'(X,t) = (f^CX^.tjffgCXg.t), . . ., fg(Xg,t))* 

and 

c*(x,t) — (c^(Xft)yc^(x,t)f , Cg(x#t))*, 

such that 

-j^(x»t) — bj^j(Zj(Xj),t), X — 1, 2, . . .; sj 

j=l 

and 

K(t) = 

K,(t) 
Kj(t) g 

e 

K^(t) 



www.manaraa.com

10 

and 

v*(t) = (w^(t),w2(t), . . ,, Wg(t))*. 

We call c(*,') the interconnection term, u(*) the 

composite system (external) input, and w(*) the composite 

system plant disturbance. It is assumed that the function 

f + c + Ku is continuous and continuously differentiable 

up to some order N + 1 in all its arguments in some domain 

D of the (x,u,t) space. 

Suppose now that we can make measurements on the 

subsystems. Then for we have (y\(t)GE^i) 

y^(t) = hu(x\(t),t) + d^(x(t),t) + (2.5) 

and for the composite system measurement (y(t)GE^ix 

X ... X E*S) 

y(t) = h(x(t),t) + d(x(t),t) + V (2.6) 

where the definitions of y, h, d, and v without subscripts 

refer to the whole composite system. 

The v^(») term in (2.5) is a white noise process which 

expresses the uncertainty in each subsystem measurement. 

The possibility of other subsystem states coupling into 

the measurement is the motivation for the d(*,*) term. 

Observe also that external self-feedback (possibly 

nonlinear) around a subsystem is allowed in this formula­
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tion# Similarly, self (possibly nonlinear) coupling is 

allowed in the subsystem measurements. These two features 

will be important in our approach to the nonlinear esti­

mation problem. 

Thus far we have not completely specified the noise 

processes in the model. This can be done by specifying 

their mean and covariances (assuming gaussian distri­

butions). Thus, let 

mean{w(t)} = 0, for all te(T^,T2) 

and 

cov{w(t^),w(t2)} tt Q(t^)é'(t^ - tg), for all t^^.tjS(T^jTj) 

where é(') denotes the Dirac delta function. We will 

assume w(*) is independent of v(*) and that 

mean{v(t)} = 0 for all tefT^/Tg) 

and 

cov{v(t^),v(t2)3 = R(ti)Jkt^ - tg) 

^(ti - tg) 

R^Cti) 
RjCti) 0 

e 
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for all 

Note that Q is not necessarily block diagonal so 

that the effects of noisy connections can be included, 

R is block diagonal because it is assumed that the sub­

system measurements are made independently. 

Before proceeding to the estimation problem we gi/e 

three examples of composite systems whose subsystems are 

interconnected in different ways. 

EXAMPLE 2.1. A simple cascade system is obtained by 

letting Kg, . . be zero and u^ = ^k-1* % = 2* • • •» 

s. The block diagram of Figure 2.1 indicates the structure 

of such a system. The fact that no measurements are made 

on S^, . • ., Sg ^ can be accounted for by letting h^ and 

d^, i = 1, . . ., s-1, be identically zero, causing y^, 

. . ., yg ^ to be meaningless. 

EXAMPLE 2.2. The block diagram of Figure 2.2 indicates 

the structure of a simple parallel connection of subsystems 

in which the only measurement is the sum of the subsystem 

outputs. This measurement may be arbitrarily assigned 

to with yg, . . •» Yg discarded as in Example 2.1. Of 

course, in many practical situations measurements can be 

performed at other points in the system and y determined 

accordingly. The form of y in these illustrative examples 

is not meant to give the impression that other possi­

bilities are precluded. 
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EXAMPLE 2.3. A simple loop connection of subsystems 

is depicted in Figure 2,3. The only measurement available 

is the output of In this case, only is nonzero. 
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Figure 2.1. A simple cascade system 
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III. MODAL-TRAJECTORY STATE ESTIMATION 

FOR NONLINEAR INTERCONNECTED SYSTEMS 

In the modal-trajectory approach the conditional 

density function is not required. Instead, the most 

probable trajectory in function space is computed to 

obtain the smoothed estimates, with the filtered esti­

mate being the final state of this trajectory. The 

appeal of the method is that the estimator equations 

can be obtained via control theoretic techniques. Hence, 

one might expect that approximation techniques which have 

been used successfully on control problems might be 

utilized to obtain an approximate modal-trajectory esti­

mator, As we shall see, this is precisely the case, and 

we shall also see that this fact will enable us to 

evaluate the quality of our approximate algorithm. 

The e-coupling method which we will use to obtain 

our approximate estimator originated in sensitivity 

analysis and the theory of optimally sensitive control 

systems; see e,g, Cruz [l3]. The method may be outlined 

in the. following way. Suppose we have a control system 

with a cost functional which contains a parameter. The 

procedure then is to expand the state (as well as the 

costate and the control) in a series about some nominal 

value of the parameter and to solve for the coefficients 
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(in function space) in the series. The necessary condi­

tions for optimality can be used to evaluate the coeffi­

cients. The advantage of this method in our problem is 

that the resulting equations which must be solved are 

decoupled by subsystem. 

In practice one uses only a truncated version of the 

series. The degree of approximation is determined by how 

many terms one is willing to compute. The natural ques­

tion which arises at this point is why is this procedure 

any better than computing a truncated series about a 

nominal state trajectory or the latest estimate (lin­

earized and extended Kalman filters). As we shall see, 

if the problem is formulated appropriately, considerable 

reductions in computation can be obtained so that more 

terms in the series can be carried. The procedure also 

gives one a systematic method for computing the terms in 

the series and a way of ascertaining the quality of the 

resulting algorithm, 

A, Derivation of the Algorithms 

In this section we derive the approximate modal-

trajectory smoothing and recursive filtering equations for 

a sub-class of nonlinear composite systems of those 

described in Chapter II, We consider only systems which 

have linear subsystems and no external inputs. Our 
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algorithms can be easily modified to include systems which 

have nonzero deterministic external inputs. 

Thus, we have, for the composite system. 

x(t) = F(t)x(t) + c(x(t),t) + w(t) (3.1) 

y(t) = H(t)x(t) + d(x(t),t) + v(t) (3.2) 

where 

F(t) = 

F. (t) 
fz't) g 

0 

F^(t)_ 

and 

H(t) = 

Hi(t) 

0 

Hj(t) 0 

H^(t) 

and where c, d, w, and v are as defined in Chapter II. 

Assume also that the initial state x(t^) is gaussian 

distributed with mean jLL and covariance P(t^), t^ in 

In order to apply the e-coupling technique, we 

introduce the coupling parameter e into equations (3.1) 

and (3.2) and into Q and P(t^) as followsi 
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x(t) s e  F(t)x( t )  + ec(x(t),t) + w(t) 

y(t) = H(t)x(t) + ed(x(t),t) + v(t) 

(3.3) 

(3.4) 

Q = 

eQ 21 

eQi2 eQ^3 . . . eQ^^ 

®2 ®^23 • • * 

eQ 

eQ 

s—1,1 

S,1 

®s-l ®^s-l,s 

(3.5) 

P(to) = 

P^(tJ eP^jCt^) . . . «Pis(to) 

L Ps(to) 

(3.6) 

e is allowed to vary on the interval [o,l]. When e = 0, 

we have a set of decoupled linear subsystems and when 

e = 1, we have the original composite system. 

Now, the likelihood function for this composite system 

is (see Mortensen [4]) 



www.manaraa.com

21 

= 0.5[x(t^) -jLL]'P~^(t^)[x(t^) -jJLl 

+ 0.5 {[x(%) - F(Tr)x('K) 

- Gc(x(?),f)]'0"^(?,G)[xC%) 

- F(r)x(?) - ec(x('e)»r)]}dr 

+ 0.5 {[y(?) - H(f)x('y) 

- Gd(x(f),T)]'R"^(v)[y('K) 

- H(f)x('y) - Gd(x(?)/tO]]d% (3.7) 

Equation (3,7) can be derived by use of the theory of 

Feynman integrals in function space, Mortensen [is]. 

For a given realization of y(?), < r < t, is a 

functional only on x(*) (and G). The most probable 

trajectory is computed by minimizing with the end 

conditions x(t^) and x(t) free. The minimizing trajectory 

x(r), tg < ? < t, is the modal-trajectory smoothed estimate 

and the final state x(t) is the modal-trajectory filtered 

estimate. 

In order to perform sequential filtering it is 

necessary to continually update the optimal estimate as 

t varies. As discussed in Mortensen, this requires us to 
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perform the minimization for a new modal-trajectory for 

each new t| i.e., perform an infinite sequence of minimi­

zations. Clearly, this is an undesirable property of the 

ïnodal-trajectory estimator. However, we shall see that 

application of the e-coupling technique to the problem 

eliminates this prohibitive computational burden. 

To put our problem into more convenient form, 

substitute (3.3) into (3.7) and treat w(f), -r < t, as 

a control. The problem now is to choose the control 

which minimizes 

with x(t) and x(tg) free. In this form, we have the 

tracking problem of optimal control theory. 

Denoting the costate by %, we define the Hamiltonian as 

CW'(x»7^»w»e,^) = 0.5 w* (t;)Q~^('fc,e )w(^) + A* (t)[F(t)x(l;) 

Jt = 0.5[x(t^) -^]*P~^(t^)[x(t^) 

{w* ('2?)Q~^('Zr,e)w(tï) + [y('y) - H('2?)x('t) 

Gd(x(ir),ir)]*R"^(t)[y(t) - H('C)x(t?) 

- ed(x('S),i;)]}d^ (3.8) 

subject to 

xd^) = F(t)x(t) + ec(x(t),t) + w(f), t^ < "tr < t (3.9) 
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+ ec(x(t),'2:) + w('b)] + 0.5 [y(t:) - H(t)x('t:) 

- Gd(x(^),'t)]. (3,10) 

Considering y(") to be a known function of'b, we apply 

the minimum principle (Pontryagin, et al. [lë]). The 

resulting necessary conditions are 

x(t) s + ec(xCt),'t) + wCt) (3.11) 

iXt) « = -[F'(^) + Gc^(x(/b),^)]?^/k) 

+ [H»(^) + ed^(x(^),^)]R"^('fc)[y(^) 

- H(^)x(t:) - Gd(x(t:),t)] (3.12) 

= Q'^(t,G)w(/b) + %('k) = 0 (3.13) 

Xt^) « p-^(t^)[x(t^) -jU,], 

A(t) = 0 (3.14) 

where the subscripts indicate partial differentiation with 

respect to the indicated argument. 

Solving (3.13) for w('b), 

w(tr) = -OCt,G)A(t;). .(3.15) 

Substituting (3.15) into (3.11), we obtain the following 
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two-point boundary value problem (TPBVP) 

x(tr) = F(t)x(t) + 6c(x(t:),tr) - Q(t,e)X(t)» (3.16) 

Â(A:>) = -[F(t) + cc^(x(t),t?)3*^'b) 

+ [H(tr) + ed^(x('b),t)]*R"^('b)[y(^) 

For each fixed t, this TPBVP must be solved for x(^) and 

X(t), t^ < t;< t since the boundary condition \(t) = 0 

must be re-enforced at each new t. To emphasize that 

X# X» Q» and P(t^) are also functions of e, we shall 

often write x(t,G), X(t,e), etc. 

Because of this and the regularity conditions which 

were imposed on the system model in Chapter II, we know 

that solutions to (3.16) - (3.17) are continuously 

differentiable up to arbitrary order N + 1 (see Coddington 

and Levinson [l?]). 

Thus, the solution of (3.16) - (3.18) can be written 

in the form 

- H(t:)x(t:) - Gd(x(t:),t:)], (3.17) 

X(t^) — ̂  + P(t^)^ t^), 

A(t) = 0. (3.18) 

x(^,e) s ̂ 2,x*(t,0) (3.19) 
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and 

^ .k 
(3.20) 

ksO 

where 

c^Cb,0) = xCtr.G) I and 
e=0 

7^(X>Q) = 
de^ 6=0 

The solution (3.19) is the optimal trajectory. In practice, 

we must be content with only a finite series approximation 

to (3,19) and (3.20) which, of course, is suLoptimal. 

Denote this suboptimal solution by x* and X*. Then 

N-1 ̂  

x*(t:,e) = y^.x^(t.O) (3.21) 

ksO 

and 

N-1 ^ 

%^(t,G) = ?f(/b,0). (3.22) 

k=0 

We call X* the Nth-order near-optimal estimate. 
V V 

Our task now is to solve for the x and X terms in 

(3.21) and (3,22). 
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Step 0» (x°, ?»P) is the zeroth-order solution which 

results from solving the TPBVP which is obtained by setting 

e = 0 in (3.15) - (3,18). That TPBVP is (where the 

arguments t and 6=0 are to be understood unless other­

wise noted) 

x° = Fx® - Q°7Ç (3.23) 

= -F*?P + H'R-^[y(t) - Hx°] (3.24) 

+ ?*(%*);e(ta), 

7?it) = 0 (3.25) 

Observe that if we now write out (3.23) - (3.25) in 

partitioned form by subsystem we obtain a set of s linear 

decoupled TPBVP*s. For i = 1, 2, . . ., s 

*i * ̂ i*i - °i^ (3.26) 

^ " -^i^ + HpJ^[y^(^) - H^x?] (3.27) 

x°(to) + Pi(to)%?(t^), 

A°(t) = 0 (3.28) 

This linear TPBVP is easily solved (see Bryson and Frazier 

[l8] or Jazwinski [?]). Suppose ûC? and ^9 are solutions 

to (3.26) and (3.27) respectively with Oi?(t^) ^ and 
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= 0 and that X? and Y? are matrices which solve the 

initial value problem 

X? = F\x? + Q^Y?, X?(t_) = P;(t_); (3.29) 
1 o 1 o 

Y? = -FÎY? + HÎRT^H^X?, Y?(t^) = I; (3.30) 

where I is the identity matrix. Then it can easily be 

verified that the solution of (3.26) - (3.28) is 

x9(tr) =0Cf(^) + X°(t)[Y?(t)]-^^°(t) (3.31) 

;Ç(>t) = jSjCt) - Y?('t)[Y?(t)]-%(t) (3.32) 

assuming that the inverse exists. 

To demonstrate that this is so, substitute (3.31) 

into (3.26), 

Oil + X^Y°(t)]-^?(t) = - Q.p? + F.xjy°(t)]-^^?(t) 

+ QiY?[Y?(t)]-^^?(t) (3.33) 

QL? = F^OÇ - Q.p? + [F\xO + Q^Y? - X?][Y?(t)]-^°(t) (3.34) 

Since CX? and jS° must satisfy (3.26), we have, fort^,t], 

X? = F\X? + Q^Y?. (3.35) 

Similarly, it can be shown that (3.30) holds. 

Step li Having solved for x° and 7^ in Step 0, we 
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differentiate (3.16) - (3,18) with respect to e and set 

e = 0 to obtain the set of s linear decoupled TPBVP's 

X 

X 

k 

= Fjxï - QjXj; + A?(x°,X°,t-) 

= -F^Xi - HÎRT^H^X^ 4- B?(x°.X°.y.t) 

(3.36) 

(3.37) 

(to) = ^ 

( t )  rc  0  

), 

(3.38) 

where 

A?(x°,X',t) = C.(x°,^) _ 2°ij^j 
j/1 

(3.39) 

B?(x°,A°,y,t) = [d^(x°,'t)R~^(y - Hx°) 

-C^(X°A)A° - H*R"^d(x°,^)]^ (3.40) 

do not depend on x^ or A^, The [']^ in (3,40) is used to 

denote the ith-partitioned block of the enclosed vector 

quantity. 

Now, (3.36) - (3,38) is a linear TPBVP and can be 

solved in the same manner as in Step 0. Let 0(^ and be 

solutions of (3.36) and (3.37) respectively with ) = 

P^(t^) = 0, then x^ and 7^ are given by 

xjct) = 0(^(t) + X^('fc)[Y^(t)]-^j3i(t) (3.41) 
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- Y^(t)[Y)(t)]-^p^(t) (3.42) 

where the matrices and solve the initial value problem 

xf « Fjxf t Q^YJ, Xi(t^) = 0 (3.43) 

y} = -FTY^ + HÎRj^H^X^, Y^(t^) = I (3.44) 

Step kt Having solved for x' and in step j, 

j = 0, 1, 2, . . ., k-1, differentiate (3,16) - (3.18) k 

times and set e s 0 to obtain the set of s linear decoupled 

TPBVP*8 

*i = ̂ i^ - Qi^ + (3.45) 

^i = (3.46) 

s 

j7l 

Py^(t) = 0 (3.47) 

where and do not depend on and 

The TPBVP can be solved in the same manner as those 

)c If 
of the previous steps. Let (X^ and be solutions of (3.45) 

and (3.46) respectively with 0(^(t^) = (t^) = 0, then 

x^(>br) = (X^(^) + X^(t)[Y^(t)]-^^^(t) (3.48) 

Ai^k) = - Yj(t)[Y^(t)]-^pJ(t) (3.49) 
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where the matrices and solve (3,43) - (3.44). 

Let us summarize briefly the computational procedure 

for determining the Nth-order near-optimal estimator. 

Stage Oi For i = 1, 2, . . ., s and t < t, for 

fixed t, perform the following three steps. 

Step li Solve the initial-value problem 

- Qipo, (X9(t^) (3.50) 

Pi = -^iPi + H^T^Cy^Cb) - p9(t^) = 0 (3.51) 

Step 2t Solve the matrix initial-value problem 

X? = F^xJ + Q^Y?, X9(t^) = P.(tQ) (3.52) 

y? = -FÎY? + HîRT^H^X?, Y?(t^) = I (3.53) 

Step 3* Compute the zeroth-order term in the estimator 

via equations (3.31) and (3.32). 

Stage ki (k = 1, 2, . . ., N) for i = 1, 2, . . ., s 

and t^ < ̂  < t, for fixed t, perform three steps. 

Step It Solve the initial-value problem 

ôdl = F.a^ - 0(^(t^) = 0 (3.54) 

Pi * "^ipi - "Pl^"i°^i + 3%-!, p^(t^) =0 (3.55) 

Step 21 Perform this step if k = 1. If k > 1, skip 

and go on to Step 3. Solve the matrix initial-value problem 
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xf = Fjxf + O^Yf, = fi (3.56) 

= -Fj^i + HÎRT^H^X]^, Yf(t^) S I (3.57) 

Step 3 : Compute the kth-order term in the estimator 

via equations (3,48) and (3.49). 

Stage Ni For the Nth-order near-optimal estimator, 

N-1 

x*(t,l) = t^ < ̂  < t. (3.58) 

k=0 

If an estimate is desired for some x(t^), t^ > t, set t = 

tj^, return to Stage 0, and repeat the procedure. 

Several observations can be made about the above 

algorithm. First, all computations are carried out at the 

subsystem level. Hence, for large composite systems we 

would expect a considerable savings in computation over 

that required by other methods which attempt to solve the 

original 2n-dimensional TPBVP, if only a small number of 

terms in the series are required. 

V 
Secondly, A must be carried along at each stage so 

V V 
that A and B can be computed in the next stage. 

In the present form, the algorithm obtains the smoothed 

estimates whether or not they are of interest. It may 

happen that only the filtered estimates are required. 

Finally, recursive filtering via this algorithm 
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requires iterating through all of the stages for each new 

value of t and suffers from a "growing memory" problem 

since the differential equations must be solved from t^ 

for each new t. 

In computing smoothed estimates of the state of a 

system, we would expect to encounter computational 

difficulties such as those above. Rarely would we expect 

to perform smoothing in real-time. As an off-line 

procedure, the above algorithm becomes practical with the 

use of a general-purpose computer and the utilization of 

"slow" memory where required. 

However, if the task is to perform recursive filtering, 

then the above algorithm is clearly unsuitable for real­

time operation and the memory requirements make off-line 

applications possible only for small problems. For the 

purpose of recursive filtering, we can reduce the algorithm 

to a more suitable one which does not have the growing 

memory problem and which does not require computation of 

the costate. 

For purposes of identification, we designate the first 

algorithm as the smoothing algorithm and the filtering 

algorithm which we will now derive as the recursive filter­

ing, or just filtering, algorithm. 

Recall that the zeroth-order term in the filtered 

estimate is obtained by evaluating equation (3,31) at 
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"t = t. Thus» 

x°(t) = 0(°(t) + P?(t)p?(t) (3.59) 

where we have set 

X?(t)[Y?(t)]~^ = P°(t). (3.60) 

Suppose now that we differentiate (3.59) with respect 

to t and recall that and must satisfy (3.50) and 

(3.51) even at t. Then 

dx?/dt = doÇ/dt + [dP?/dt]p? + Pj[dp?/dt] 

= F.x° + P°HîRT^Cy.(t) - H^x?] 

+ [dP?/dt - F^pO _ P?F! _ 

+ PiH!RT^Hj^p9]p?. (3.61) 

If we require that P?(t) satisfy 

dP°/dt = F^P° + P?F* + _ pJhîRT^H^P? (3.62) 

then 

dxj/dt s F^x? + P?Hp7^[y^(t) - H^x?]. (3.63) 

To determine the initial conditions on (3.62) and (3.63), 

let t = t^ in (3.28) and recall the definition of P?, 

equation (3.60), and the initial conditions on X? and Y?, 



www.manaraa.com

34 

PfCtg) = Pi(tg) (3.64) 

Thus, the zeroth-order term in the near-optimal 

recursive filter is a set of s decoupled Kalman filters. 

Following the same procedure, similar results can be 

obtained for the higher order terms in the series. There­

fore, let us summarize briefly the Nth-order near-optimal 

recursive filtering algorithm. 

Stage 0* For i=l, 2, . . ., s and t > t^, the 

zeroth-order term is given by 

Pi = PiP° * P?Pr * Qi - PfHrRjlHjP?, 

= P,-(t„) (3.65) 
1 o 1 o 

X° = F\x9 + PiHpT^[y^(t) - H^x?], 

x9(to) =^. (3.66) 

where the dot now denotes differentiation with respect to t. 

Stage ki (k » 1, 2, , , N) for i = 1, 2, . . ., s 

and t > t^, the kth-order term is given by 

pj . F^pl + pip; f Qi - PJhîrT^H.PJ. 

Pl(t^) = 0 (3.67) 
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(3.68) 

Stage N> The Nth-order near-optimal recursive filter 

is given by 

N-1 

x*(t,l) = g,x*(t,0), t > t^. (3.69) 

The filter is recursive in the following sense. We 

have in mind, of course, the implementation of the algorithm 

on a digital machine. The filtered estimate is specified 

by the solutions of (3.65) - (3.68) evaluated at t. For 

the filtered estimate at t +At, one merely integrates 

(3.65) - (3,68) forward to t + At. The only quantities 

which must be stored are the values of the solutions at t. 

Once the values at t + At have been obtained, the values at 

t may be discarded. Thus, the filtering process proceeds 

from step to step, the present step depending only on the 

previous one, 

v?e have derived approximate algorithms for the 

performance of nonlinear smoothing and recursive filtering 

which require us to solve only linear equations. The 
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computations are performed at the lower dimensional sub­

system level, and we expect that it will be most useful in 

applications to large system problems. Note also that the 

"gains" can be precomputed if desired, whereas in the 

extended Kalman filter this is not true because of the 

need to re-nominalize about each new estimate. 

The degree to which the solutions resulting from the 

algorithms approximate the optimal solutions depends only 

on the number of terms in the series that are computed. 

The natural question then asks how many terms are enough. 

A partial answer to this question will be given in the 

next section. 

B. Performance Analysis 

The degree of approximation achieved by the Nth-order 

near-optimal estimator can be determined at least qualita­

tively via a theorem first stated and proved by Werner 

and Cruz [lO] and later generalized by Cruz [l3]. It 

was used to assess the suboptimality of a design technique 

for feedback control systems subject to parameter varia­

tions. Although stated for a control problem, the result 

translates directly to the modal-trajectory estimation 

problem. 

Suppose that we evaluate for both x(*,e) and 
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Denote these values by J^(G) and J*(G) respec­

tively. If we now expand both J^(G) and J*(G) in a series 

about 6 » 0, we get the following result, which is applica­

ble to both smoothing and filtering. 

THEOREM 3.1. For an Nth-order near-optimal estimator, 

the first 2N terms of the aeries for J* are equal to the 

corresponding 2N terms of the series for J^, 

I 1 JÎ(G ) I s ——J (6)j , k = 0, 1, 2, . « ,, 2N-1 (3*70) 
dG*^ ^ G=0 dG^ ̂  G=0 

Proof. See Chapter 6 of Cruz [l3]. 

Although the above theorem tells us that the terms in 

the series match one another, for up to the 2Nth-order, 

no estimate of the difference between the two series is 

available. Thus, it fails to answer quantitatively the 

question of how good the performance of our estimator is. 

We might speculate that the answer can be found by deter­

mining bounds on the remaining terms in the series for 

and J*. Unfortunately, a procedure for determining 

such bounds has not yet been discovered. 

C. Example 

In this section we present a simple application of 

the near-optimal recursive filtering algorithm to demon-
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strate that the method does work for at least some problems, 

A full computational study of the algorithm, although 

desirable, is beyond the scope of this work. It should 

also be noted that the computational advantages of the 

algorithm cannot be fully realized on small problems. 

The advantage of the subsystem level computations become 

more pronounced with larger composite systems. 

For our example we consider the following system 

This system may have originated as a scalar system with a 

Riccatti type plant description and with exponentially 

correlated plant and measurement noise components. The 

states Xg and x^ result from augmenting the state with the 

correlated noise processes. Although small, this problem 

presents the algorithm with several elements which provide 

a fair test* nonlinear self-feedback in one subsystem. 

• 2 
x^ s ax^ + bx^ + cxg + w^ 

Xj = dXg + w^ 

X3 = ex3 + W3 

2 y = x^ + x^ + fXg + V 

Xi(0)/^N^^,p^(0) ),X2(0)/\/N^2'P2(°) 

X3 ( 0 ) ^3 , P3 ( 0 ) ) 

( 3 . 7 4 )  

( 3 . 7 3 )  

( 3 . 7 2 )  

( 3 . 7 1 )  
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a nonlinear measurement, and coupling between subsystems 

in both the plant dynamics and the measurement process. 

Choosing to view the system as an interconnection of 

three scalar subsystems with states x^, and Xg 

respectively, the composite system has the structure 

depicted in Figure 3,1, The third-order near-optimal 

recursive filter is given by 

P° = 2ap° + = (p°)Vr, 

Pn — 2dp~ + * 

•o - o 
P3 = Zepg + q^. 

-I 

axj + p°(y 

dx°. 

x°)/r. 

ex 

Pi = 

Po = 

3' 

2ap^ + q^ -

Zdpg + 

2ep3 + qg. 

(Pl)^/r, 

P°(0 

P?(0 

p|(0 

x°(0 

x°(0 

x|(0 

P^(0 

P2(0 

PgCO 

= Pj^(O) (3.76) 

= P2(0) (3,77) 

= P3(0) (3.78) 

= 42 

= 43 

= 0 

= 0 

= 0 

(3.79) 

(3.80) 

(3.81) 

(3.82) 

(3.83) 

(3.84) 

(a - pj^/r)x^ + pj[2x°(y - x°)/r] + b(x®)^ + cx|. 

x^(0) « 0 (3.85) 
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dx^» 

eXg + Pgf(y x°)/r. 

xj(0) = 0 

x^(0) = 0 

(3.86) 

(3.87) 

x^ = (a - pj/r)x^ + 4p^[xJ^(y - x°) - xjxj^ - xj(x°)^ 

- fxj^xg - x°(2x®xj + fx^)]/r + 2(2bx^x° + cXg), 

x^(0) = 0 (3.88) 

Xg = dXj, X2(0) = 0 (3.89) 

Xg = ex| - 2p2f[xJ + (xj)^ + fx°]/r, 

Xg(0) = 0 (3.90) 

xj(t) s x?(t) + xj(t) + 0.5x?(t), i = 1, 2, 3 (3.91) 
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w. 

Figure 3,1, 

b 

A simple nonlinear system 
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Notice that Pg, Pg, and Pg are not actually needed 

anywhere in the computations so that equations (3.77), 

(3.78), and (3.83) may be deleted. Also, further simpli­

fication can be obtained by recognizing that the solutions 

of (3.80), (3.81), (3.86), and (3.89) can be found analyti­

cally, eliminating the necessity of integrating them 

numerically. Hence, 

Xgit) s jj^^expidt] (3.91) 

x°(t) cj^^expCet] (3,92) 

X2(t) = X2(t) = 0 (3.93) 

for all t > 0. 

The system (3.71) - (3.74) was simulated for several 

sets of parameter values and sample functions using rectan­

gular integration with a step size of 0.001. Simultaneously, 

the above near-optimal modal-trajectory filter, and for 

comparative purposes, the extended Kalman filter for this 

system were simulated. 

In all cases, the a, d, and c parameters were set as 

follows: 

a = -0.5 cov{v(tj^),v(t2)} * r6(t^ - t^) = 0.1&(t^ - t^) 

d = -100.0 cov{w(tj^),w(t2)} = diag{q^,q2»q3}6(t^ - t2) 

e = —100.0 q^ = q2 = q^ = 0.1 
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The values for d and e were chosen to make the response of 

the correlated noise states appear nearly white relative 

to the response of 

In Figures 3.2 - 3.7, for four sets of parameters, 

a typical sample function and the estimation error resulting 

from the extended Kalman filter, the second-order near-

optimal filter, and the third-order near-optimal filter 

were plotted on semi-log axes. Because of the wide range 

of values encountered, this type of scaling was required. 

The results for states Xg and x^ are given for only one 

set of parameters as they did not change appreciably from 

one set to the next. 

In Figure 3.2 note that after an initial transient 

period the third-order near-optimal filter produces a 

smaller estimation error than the extended Kalman filter. 

The second-order filter does better than the extended 

Kalman filter at times, but not consistently so. Thus, 

it appears that the improvement in performance warrants 

the addition of the third term in the series for this 

example. 

In Figures 3.3 and 3.4 we see that all three filters 

do an equally poor job of tracking the correlated noise 

states. 

Figure 3.5 demonstrates the result of increasing the 

effect of the plant nonlinearity. The extended Kalman 
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filter performed about the same. However, the near-optimal 

filters did well until near the end of the run# when the 

estimation error began to increase. 

Figure 3,6 illustrates the effect of increasing the 

coupling in the plant dynamics. Very little change in 

performance resulted. 

In Figure 3.7 we find, as expected, that the effect 

of decreasing the coupling in the measurement results in 

even better performance by the near-optimal filters. 

From this example, we can draw several preliminary 

conclusions regarding the performance of the near-optimal 

modal-trajectory filter. The near-optimal filter should 

perform well under conditions of light coupling and small 

nonlinearities. One might reply that this is true also 

of the extended Kalman filter, which is less tedious to 

design. However, it should be remembered that the near-

optimal filter is intended for application to large-

dimensional problems where its decoupling properties provide 

significant computational savings over methods such as the 

extended Kalman filter. In addition, unlike other approx­

imate filters, performance can be improved by computing 

more terms in the series, with Theorem 3.1 indicating how 

much the performance is to be improved. 
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Figure 3.2. Filter performance for state 1 
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Figure 3.5. Filter performance for increased plant nonlinearity 
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IV. STATE ESTIMATION FOR 

LINEAR INTERCONNECTED SYSTEMS 

In this chapter we present two approaches to filtering 

for linear interconnected systems. Both approaches are 

based on the e-coupling technique. Unlike the nonlinear 

problem, the linear problem has a known closed-form 

solution, the Kalman filter. See the Appendix for a state­

ment of the linear estimation problem and a summary of the 

Kalman filter equation. For large systems, computational 

problems arise, however, which may render implementation 

of the Kalman filter impractical in a particular applica­

tion because of the severe computational limitations which 

may be imposed by the capability of the on-board computer. 

Over the years a number of ad hoc methods have been 

proposed to remedy the problem; see e.g. Pentecost [l9], 

Aoki and Huddle [ZO], and Bucy and Joseph [2l]. The e-

coupling method provides two systematic approaches to this 

problem. The computational load is relieved by performing 

computations at the lower-dimensional subsystem level. 

Given the system model, the Kalman filter is uniquely 

specified by the covariance matrix of the estimation error. 

This matrix satisfies a matrix Riccati equation. In Section 

A we apply the e-coupling method to this Riccati equation 

to obtain an approximate error covariance matrix. This 
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approach is restricted to two-subsystem composite systems. 

This approach is based on the approach of Kokotovic, et al. 

[22] to the linear regulator problem, which was later 

extended by Haddad and Cruz [l4] to the linear estimation 

problem. Although formulated within the framework of 

interconnected systems, our results are substantially the 

same as Haddad and Cruz. 

In Section B we specialize the results of Chapter III 

to the linear case to obtain a near-optimal linear filter 

which is not restricted in the number of subsystems. 

In Section C we give some performance results which 

indicate the degree to which our filters are suboptimal. 

We present some examples in Section D to illustrate 

the use of the algorithms. 

A, Two Subsystem Case 

We now apply the method of Kokotovic, et al. [22] to 

the covariance matrix, P, of the estimation error of the 

Kalman filter to obtain the results of Haddad and Cruz [l4]. 

Let our interconnected system be composed of two 

linear subsystems which are linearly connected. Then 

x(t) 3 F(t)x(t) + eC(t)x(t) + w(t) (4.1) 

y(t) = H(t)x(t) + eD(t)x(t) + v(t) (4.2) 
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where we have introduced the coupling parameter € and 

X* = 

w* = [w^.Wj]*, 

1 "1 
1 9 H s ^ ' 1 

0" 

p ^2. ^ 1 «2-

c = 
n? 

^12 

9 
D = 

[0 1 

1 

1 

°l2l 

k i  
0 _ .»2l 1 0 _ 

w and V are independent zero-mean gaussian white noise 

processes with 

cov{w(t^),w(t2)] = 
«l<h'  I 

L.Olj(t^) 1 Q2(t^)J 

6(t^ - tg) 

and 

covfvCt^i.vCtg)] = 

•RiUJ) , 1 
S(t^ — tg)» 1 

1 
S(t^ — tg)» 

_ 0  

are assumed to be positive definite. 



www.manaraa.com

54 

Given the above model, the optimal minimum variance, 

unbiased, a posteriori maximum-likelihood (modal-trajectory) 

recursive estimator is specified by the solution of the 

matrix Riccati equation 

P(t) = [F(t) + eC(t)]P(t) + P(t)[F(t} + GC(t)]' + Q(t,e) 

- P(t)[H(t) + GD(t)j'R-l(t)[H(t) + eD(t)]p(t), 

P(to»e) given, (4.3) 

where P(t^,e) is of the same form as Q(t,e), 

Since P actually depends on e as well as t, we will 

often denote it as P(t,s). P(t,e) is an analytic function 

of e on [0,1] from a theorem on the differentiability of 

solutions of ordinary differential equations with respect 

to a parameter (Coddington and Levinson [l?]). Hence, 

the solution P(t,e) can be expanded in a series about 

G = 0, 

oO 
P(t,e) = ^ G^P^(t,0) (4.4) 

k=0 

where P^(t,0) denotes 3^P(t,G)/9G^ evaluated at g = 0 for 

every t > t , 
— o 

Of course, in practice we would not expect to use 

(4.4), but an approximate truncated version 
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N-1 

Pg(t,e) = (4.5) 

k=0 

We now proceed to find the terms in the series (4,5) 

via the same procedure as in Chapter III, Denote 

P*(t,0) = 

Pj(t) 

stage Ot Let e = 0 in (4.3) and write out the result­

ant equation in partitioned form 

P? = F.P? + P?Fî + 0. - P?HÎRT^H.P?, 
1  1 1  1 1  1  1 1 1 1 1  

Pj(t^) = P.(t^), i = 1, 2 (4,6) 

and 

^12 - ^12(^0) = (4,7) 

Thus, in the zeroth-order term, the off-diagonal 

block is zero for all t and the diagonal blocks satisfy 

decoupled matrix Riccati equations. Therefore, the filter 

corresponding to the zeroth-order term is a set of two 

decoupled Kalman filters. The dimensions of the filters 

are that of the subsystems. 

Stage 11 Having solved for P°, differentiate (4,3) 
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with respect to e and set 6 = 0. 

= [F - P°H*R"^H]P" + P^[F - P°H*R"^H]* + 

+ CP° + P°C* - P°[D*8~^H + H*R~^D]P°, 

P^(T ) = JLP(t ,G)| (4.8) 
° ° e = 0 

Writing out (4,8) in partitioned form yields 

pj = [Fi - P°H'R-\1P^ + P^[F^ - P°H'R-\]\ 

Pl(to) = 0 (4.9) 

^2 = [^2 - ' P^H^Rg^]', 

P2(to) = 0 (4.10) 

= [?! - 4. Q,2 

+ =12^1 * •il - Hj + 

- P|t«2®iSl + °i2«l\>?' = Pl2<'o' (4-11) 

Since equations (4.9) and (4.10) are linear and 

homogeneous with zero initial conditions, P^(t) and Pg(t) 

equal zero for all t > t^. Thus, for Stage 1 we have 

Pj(t) = 0 (4.12) 

Pgft) = 0 (4.13) 
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for all t > The off-diagonal block is obtained from 

= "Ai * PÏzG; • * A°2, = Pj2<t) (4.14) 

where 

(4.15) 

GG = FG - (4.16) 

A°2 = C^^pf 4. pfcjj - PJD-jRJIH^ + HJR-lDjj]pf 

- + ^i2^1^"l^^l (4.17) 

Note that for this step the equation for the nonzero 

off-diagonal block is linear. 

Stage k% ( k > 1) Having solved for P°, P^, ...» 

Ic—1 
P ~ we differentiate (4,3) with respect to e and set 

G = 0. There are two cases. 

Case 1; k even. 

Pj = G^pJ + P^Gî + aJ-^. P^(t^) = 2, i = 1, 2 (4.18) 

where does not depend on P^. 

P^2(t) = 0 for all t > t^. (4.19) 

Case 2i k odd. 

% = * ̂ Ï2®2 * Plz'Co' = (4-20) 
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k—1 V 
where does not depend on P . 

P^(t) = 0 

P^Ct) = 0 

for all t > t , 
— o 

Thus, we see the terms in the filter gain which 

represent the cross-coupling between subsystems correspond 

to the odd-numbered terms in the series. 

Recapitulating, the procedure for computing an approxi 

mation to the P matrix, and hence the filter gain, is as 

follows. 

For an N-term approximation, the even-numbered terms 

are of the form 

Pi*(t) I 0 

k — 0# 1f • • • (4 .21 )  

I P2*(t) 

where for k = 0, 

P?^(t) = F.(t)p2k(t) + p2%(t)F!(t) + Q^(t) 

- P?*(t)H!(t)RTl(t)HU(t)P?k(t), 

i = 1, 2 (4 .22 )  
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and for k > 0, 

Pf*(t) = G^(t)P?'^(t) + P?*Xt)G!(t) 

P^^(t^) =0, i = 1, 2 

The odd-numbered terms are of the form 

p2k+l(t) = 

0 

[p;%+i(t)] 

Pl2*^(t) 

ff 

where for k = 0, 

= Gi(t)p2K+l(t) + p2k+l(t)G2(t) 

+ Q^gCt) + A^^(t), 

^12 = ^12(^0) 

and for k > 0, 

Pl2*^ = G^{t)P^2*^(t) + P^2'^^(t)G^(t) 

+ A^^(t), 

Pl2+'(to) = 2 

(4 .23 )  

(4 .24 )  

(4 .25 )  

(4 .26 )  
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The suboptimal covariance matrix is given by 

N-1 

Pg(t.l) = ^^,P^(t,l). (4.27) 

k=0 

The principal appeal of this algorithm is that 

computation of the estimation error covariance can be 

accomplished by solving a sequence of problems whose 

dimensionality is lower than that of the original prob­

lem. The advantage of this is particularly apparent for 

rather large-dimensional composite systems. Suppose 

that n » 16 and n^^ = ng = 8. Then instead of solving 

n(n + l)/2 = 136 coupled nonlinear equations, one solves, 

say for N = 3, two decoupled sets of n^Cn^ + 1)/2 = 36 

coupled nonlinear equations and three decoupled sets of 

36 coupled linear equations. It is well known that for 

large n, convergence difficulties plague the solution of 

the Riccati equation, see e.g. Meditch [23]. Also, for 

certain classes of problems additional savings can be 

obtained in computation due to the special structure of 

the composite system. This will be dealt with in more 

detail in the examples. 

As we indicated earlier, the results just presented 
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are not new. However, Haddad and Cruz [14] presented only 

the algorithm without indicating for what classes of 

estimation problems this approach might be applicable and 

without demonstrating that the algorithm performs computa­

tionally in a well-behaved manner. It is the purpose of 

our examples to make some preliminary exploration in that 

direction. 

For a large class of linear estimation problems the 

corrupting plant noise is not white. Often this correlated 

noise can be modeled as the output of a linear shaping 

filter operating on white noise. Thus, to obtain the 

proper form for the model required by the Kalman filter, 

the state vector is augmented with the states due to the 

correlated noise processes of the system. This model can 

naturally be viewed as an interconnection of two subsystems 

where the matrices F and C are of the form 

F = 

F I 0  
^ I 

0 

C = 

0 "12 

f6 I # 

(4.28) 

where F^ is often a diagonal matrix. The matrices H and 

D are of the form 

H, 0 

H 0 (4.29) 

f  I «L  



www.manaraa.com

62 

In other words, interconnections occur only in the dynamics 

of the composite system. 

In a similar manner, if the observations are corrupted 

by the sum of a correlated noise process and a white noise 

process, the state can be augmented to include the effects 

of the correlated measurement noise in the model of a form 

required by the Kalman algorithm. For this class of prob­

lems, the system can be naturally viewed as an inter­

connection of two subsystems with 

F = 
^ I ^  

C = 0 (4 .30 )  

and 

H = 
Hi I 0 

0 - 0  

D = 
0 I D 

0 I 0 

12 
(4.31) 

where F^ is often a diagonal matrix. 

A large number of estimation problems in automatic 

navigation and control fall into the above classes of 

problems or their combination. Another approach to this 

class of problems, which utilizes lower-dimensional compu­

tations, is that of Bryson and Henrikson [24], but it is 

restricted to the case of correlated measurement noise only. 

The next natural question is whether the above 



www.manaraa.com

63 

algorithm can be generalized to include systems consisting 

of more than two subsystems. The answer to that question 

is no. The reason is thus. 

In deriving the equations for the succeeding terms 

in the series, the following facts about the multiplication 

of certain classes of partitioned matrices were used. 

Suppose a is any matrix in the class of block-diagonal 

matrices (two blocks on diagonal) and b is any matrix in 

the class of zero block-diagonal matrices (two blocks on 

diagonal); i.e. a and b are of the form 

a = 
I 

0 

b s 

0 

bg I 0 

Then ab, ba, and bb belong to the class of zero block-

diagonal matrices and aa belongs to the class of block-

diagonal matrices. Because of this property, the equations 

for the diagonal blocks in the odd-numbered terms are 

homogeneous with zero initial conditions, resulting in 

zero blocks on the diagonal. Similarly, the same result 

is true for the off-diagonal blocks in the even-numbered 

terms. 

Now, suppose we generalize to s subsystems, then F, 

C, H, and D are of the form 
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and 

H = 

^2 0 

0 

^21 

Ci2 . . . 

0 C23 ... 

• C = • * • 

0 • 

# 

• • 

• • 

Al • 9 • 0 

k 

"2 

1 

~0 

^21 

Di2 . . . 

0 ^23 ••• 

• 
D = 

• • • 

0 
' »s_ 

-Dsl 

• # 

• » 

• • • 0 

In deriving the equations to be satisfied by the terms in 

the series, we must consider products of matrices of the 

form 

a = 

a. 

0 

0 

S J 

b = 

g 

bjl g • • • b 2s 

L^si » • • fS 

Then aa is of the same form as a and ab and ba are of the 

same form as b. But bb in general is a full matrix, not 

of the form of either a or b. Hence, for the s subsystem 
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case, multiplication within the classes of partitioned 

matrices encountered is not "closed." 

Because of this lack of "closure" property, terms of 

the form CP^~^ + for k > 2, appear which result in 

coupled nonhomoqeneous equations for the subsystem parti­

tions, Therefore, the series no longer alternates with 

matrices of the form a and b and P can no longer be 

computed via uncoupled sets of equations, which is the 

chief justification for using the method. 

How then do we generalize to the s subsystem case? 

Clearly, we can specialize the results of Chapter III to 

the linear system, linear connections case. This will be 

done in Section B. In exchange for the ability to deal 

with arbitrary numbers of subsystems, we lose some of the 

simple intuitive interpretation associated with the above 

method and our ability to quantitatively assess the 

performance of the resulting filter. 

B. s-Subsystem Case 

In this section we specialize the results of Chapter 

III to the case of linear subsystems with linear inter­

connections and observations. Thus, 
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C = 

0 

C21 0 
12 • • • C Is 

'si 

^23 • • • ^2s 

• • # 0 

, D = 

0 '12 

L^si • 

. D Is 

°21 ^ ^23 * • . D, 2s 

^ J 

(4.32) 

so that the Nth-order near-optimal modal-trajectory linear 

filter is given by 

Stage 0* For i = 1, 2, . . •> s and t > t^, the 

zeroth-order term is given by 

P° = F.P° + P?F! + 0. -

^T(^o) = Pi(to) 

X? = F.x? + P°HpT^[y^(t) - H.x°], 

(4.33) 

=i(to) =jU'i (4.34) 

Stage ki (k = 1, 2, . . ., N-1) for i = 1, 2, 

and t > t^, the kth-order term is given by 

Pi » F^P]; + P^Fî + Oi - PiHjRT^HiPf, 

Pj(t^) = ̂  

*i = [^i - + PiSt-l ^ A^-l, 

(4.35) 

x.(to) = 0 (4.36) 
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where is computed only at Stage 1 and and 

do not depend on x , j = 1, 2, . • k. 

Stage N: The Nth-order near-optimal recursive linear 

filter is given by 

N-1 

x*(t,l) = 2^,x^(t,0), t > t^. (4.37) 

k=0 

Note that the expense we pay for the flexibility of 

allowing any number of subsystems, attended by possibly 

greater computational savings, is that no intuitively 

appealing interpretation in terms of filter gain can be 

made as could for the method of Section A, Perhaps the 

greatest drawback is that this fact prevents us from 

making a complete assessment of the performance of the 

filter, 

C, Performance Analysis 

In this section we attempt to answer the questions 

of how suboptimal the above two filters are. In the 

latter case, a partial answer can be given. The theorem 

of Chapter III is applicable and for an Nth-order approxi­

mation the optimal cost functional is approximated up to 

the 2N-order. 

However, a more complete accounting can be given for 
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the filter of Section A, If the optimal estimation error 

covariance matrix is used, the filter gain is given by 

K(t) = P(t)[H(t) + D(t)]*R"^(t) (4.38) 

where P(t) satisfies (4.3) with e = l. The value of the 

optimal cost functional is given by 

3^ = trP(t). (4.39) 

If the Nth-order approximation to P is used, the 

filter gain is given by 

Kg(t) = Pg(t,l)[H(t) + D(t)]'R-l(t) (4.40) 

and the value of the cost functional is given by 

J* = trP^(t) (4.41) 

where P^^ is the covariance matrix of the actual estimation 

error resulting from the use of K^, According to Pried land 

[25], P^ satisfies 

P^ = [F - Pg(H + D)'R-1(H + D)]Pa 

+ Pg[F - Pg(H + D)'R"1(H + D)]' 

+ Q + Pg(H + D)'R-1(H + D)Pg, 

Pjj(to) s P(t^). (4.42) 
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Nov, the degradation of the filter resulting from 

using instead of P in the gain computation is the 

difference between the value of the suboptimal cost 

functional and the optimal cost functional; i.e, 

AJ = J* -

= tr[Pg - P]. (4.43) 

Denote P^ - P by P, then subtracting (4.3) evaluated at 

e = 1 from (4.42) ve obtain 

r = [F - P(H + D)'R-1(H + D)]r 

4.r[F - P(H + D)*R-1(H + D)]' 

+ e^[r(H + D)'R-1(H + D)A 

+ A(H + D)'R-1(H + D)r] 

+ e^^A(H + D)'R-1(H + D}A, 

Htçj) = 0 (4.44) 

where 

« gk-N 
A= > ç. P (t,e)| . (4.45) 

iSî 

A more convenient form for A can be found by taking the 
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difference between P and P„ to find that s 

P - P = G%. (4.46) 

By solving (4.44) and computing the trace of the 

solution we have a direct method of evaluating the perform­

ance of the Nth-order near-optimal linear filter. More­

over, using (4.44) we can prove a theorem like that of 

Chapter III by the method of Kokotovic and Cruz [26] for 

the corresponding result for the linear regulator problem. 

THEOREM 4.1. For an Nth-order near-optimal linear 

filter, 

;\k k 
—T—P(t,e)| = p (t,e)j , k = 0, 1, 2, « . ., 2N-1 

de^ e=0 ® e=0 

(4.47) 

Proof. To prove the theorem, it is sufficient to 

show that the first 2N terms in the series expansion of P 

are zero. Setting e = 0 in (4.44) yields a linear homo­

geneous equation with zero initial condition forP®. 

Hence,P®(t) a 0 for all t > t^. Differentiating (4.44) 
— o 

with respect to e and setting e = 0, we find a similar 

result for P^. Proceeding inductively, one can show that 

this is true for terms up to the 2Nth-order. Beyond the 

2Nth-order, the resulting linear equation is no longer 

homogeneous. For more details, see the analogous proof 

of the corresponding theorem for the linear regulator 
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problem by Kokotovic and Cruz [26]. 

Comments on the interpretation of the theorem of 

Chapter III are applicable here also. 

D. Examples 

In this section we present three examples which 

represent, on a lesser scale, classes of estimation 

problems for which the e-coupling method might be expected 

to yield successful results. We point out that the 

purpose of these simple examples is to demonstrate the 

use of the algorithms and some of their properties. 

However, the principal attraction of the method, compu­

tational savings, can only be realized on applications to 

fairly large problems, 

EXAMPLE 4.1, Suppose we are given a scalar plant 

described by 

x^ 3 -ax^ + bXg + w^, a > 0 

with measurements 

y = dx^ + V 

where w^ and v are independent gaussian white noise 

processes and Xg is an exponentially correlated plant 

disturbance. 

Since Xg can be modeled by the scalar system 
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Xg = -cxg + *2» c > 0 

where Wg is a gaussian white noise process independent of 

V, we have the equivalent two-dimensional linear system 

X = 

—a b 

0 -c 

X + w 

= [d,^ X + V 

with 

and 

cov{w(t^)w(t2)} = Q6(t^ - tg) 

cov{v(tj^),v(t2)} = r5(t^ - tg). 

Viewing this system as an interconnection of two 

scalar subsystems with states x^ and x^ respectively, 

the third-order approximation to P is given by 

Pi = 

p| = 

PÎ2 

-2ap° + - (dp°)2/r. P?(0) 

-Zcpg + qg, 

-[a + c + d^p°/r]p^2 + bp^ + q^g* 

Pl(0) 

= P2(0) 

Pl2(0) = Pi2(0) 
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.2_o Pi = -2[a + d^p°/r]p^ + Zbplg, Pi(0) = 0 

P2 = -2[cp2 + (dpj^g)^/!-], P2(0) = 0 

^ = 
p° + O.Spi P^g 

P12 

The equations for P^, P, and P were solved for both 

the second and third-order approximations using a fourth-

order Runge-Kutta algorithm in the CSMP language* For 

all runs, a = c = d= r=q^=:q2= p^fO) = PgfO) = 1,0 

and q^2 = p^gfO) = 0 were used. 

In Figures 4.1 - 4.3 the elements of F for b = 1.0 

and for N = 2 and N = 3 are plotted. In order to infer 

the meaning of the magnitude of the numbers, the steady-

state value of the corresponding element of the P matrix 

is printed on the plot also. The elements of the P matrix 

were found to behave exponentially and decayed quickly to 

their steady-state values. 

From these plots we can see that the addition of the 

third term in the series does not produce a filter which 

is appreciably less suboptimal. For example, the steady-

state value of for N = 2 is about 0.79% of the steady-

state value of p^ and the steady-state value of for 

N = 3 is about 0,1% of the value of p^. In most cases 
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this marginal improvement would not warrant the computa­

tion of the extra term. 

In Figures 4,4 - 4,6 similar plots are given for 

b = 0,1, As expected, by reducing the amount of coupling, 

the degree of suboptimality is markedly decreased, 

EXAMPLE 4.2. In this example we consider a scalar 

system with measurements which are corrupted by the sum 

of exponentially correlated noise and gaussian white 

noise; i,e,, 

x^ = -ax^ + w^, a > 0 

y = cXj^ + dXg + V 

where w^ and v are independent gaussian white noise and 

Xg is exponentially correlated noise which can be modeled 

by 

x^ = bXg + Wj, b > 0 

where Wg is gaussian white noise independent of v. 

Augmenting the state, we have the equivalent two-

dimensional linear system 

X + w 
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y m [c,d]x + V 

with 

cov{w(t^),w(t2)} = o6(t^ - t^) 

and 

cov(v(t^),v(t2)} s ré(t^ - tg) 

If we view this system as an interconnection of two 

scalar subsystems with states and x^ respectively, the 

third-order approximation to P is given by 

P° = -2ap° + _ (cpJ)Vr, p°(0) = p^(0) 

P2 = -2bp2 + qj» P2(0) = P2(0) 

P12 = -(a + b + c^p°/r)p^2 - cdp°p|/r + q^g. 

Pl2(0) = Pi2(0) 

Pi = -2(a + c^p°/r)p^ - rcdp°pi2/r. 

Pl(0) = 0 

0\2/_ . __^_o_l /_ . / 1 ^2 P2 = -2[bp2 + (dp§) /r + 2cdp|p^2/^ + (cp^g) /r]. 

PgCO) = 0 
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p° + 0.5pJ 

P 
S 

o ^ _ 2 
Pg + O.Spg 

The equations for P^, P, and P were solved as in 

Example 4.1 for both second and third-order approximations. 

For all runs, the values a=b=c=r=q^=q2= 9^(0) = 

p^tO) = 1.0 and q^^ = p^gfO) = 0 were used. 

The results are plotted in Figures 4,7 - 4,12 for 

d = 1,0 and d s 0.1, From a qualitative point of view, 

the results were the same as in Example 4,1, 

EXAMPLE 4,3, In this example we consider the error 

propagation in a slow-moving vehicle pure inertial 

navigation system. We will assume that the vehicle is 

a slow-moving surface vehicle such as a ship and that 

the navigation system is operating in a locally level, 

latitude-longitude coordinate system with x-axis north, 

y-axis west, and z-axis up. Since we consider only sur­

face vehicles, the vertical channel will not be imple­

mented. We assume also that the "platform errors" can be 

neglected. 

Given these assumptions, we have the following error 

model for the position and velocity errors (Pitman [2?]), 
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[«= 
0 1 1 0 0 0 

1 
1 

1 
p 0
 t
o 

0 1 0 

0 0 1 0 1 L*2 J 0 

0 0 *2,2_ 

where is the x-channel (north error) and is the 

y-channel (west error) and is the Schuler frequency and 

is the vertical component of the earth angular rate. 

The second subscript denotes the component of the sub­

system vector. For example, x. . is the position error 
Xf 1 

in the x-channel, x. ̂  is the velocity error in the x-

channel, and w^ g is the accelerometer error in the x-

channel. The fact that some components of the w vector 

are identically zero can be accounted for by allowing 

Q to be semi-definite. 

If we view the error model as an interconnection of 

the north error model and the west error model, then 

^1 = ^2 

L-^O 

and 

^12 = 

0 

0 
'21 

0 

0 .212 
Z-
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Suppose that we have only position measurements 

available, then 

'l 0 I 0 0 

_ 0  o i l  q  

and 

Ki = Hg = [l,0], D^2 = Dgi = 0 

The equations for P, P^, and F for N = 1, 2, and 3 

were solved using rectangular integration and a step size 

of 0,2 seconds for a nominal latitude of 45 degrees» The 

initial P matrix was chosen to be diagonal with 

p^(0) = PgfO) = 10^ ft?, 

PgCO) = p^(0) = 10® X (ft/sec)^. 

The Q matrix was chosen to be diagonal with q^ = q^ = 0 

and qg = = 3 chosen to correspond to an rms position 

error of one foot after one second. The value of r^ 

6 2 
and rg (10 ft.) was chosen to correspond to an rms 

position error of approximately 450 ft, for one second 

between sampling times. 

In Figure 4,13 a portion of the results are listed. 

The values of some of the quantities of interest for 

comparison were too nearly equal for meaningful plots to 

[%] • • 
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be made. After the first column in which the time is 

listed, the next six columns list the diagonal elements 

followed by the trace of Pg for N = 1 and 3, P, and P (G) 

for N = 1, 2, and 3. The last two columns list the 

elements of the off-diagonal block of Pg for N = 2 and 

3 and for P in the order ^14* ^23' ^24' 

was done to get some idea of the effect of the coupling 

between the two subsystems, which we can see from 

Figure 4,13 is fairly small. 

As we can see from Figure 4,13, the diagonal terms 

for the three suboptimal covariance matrices are very 

close in value to those of the optimal covariance matrix. 

The fact that these approximations are not very suboptimal 

is further verified by the magnitude of the elements of F 

for the three cases. 

It is apparent that round-off errors have effected 

the computation of F» This is to be expected since the 

difference of two large, b\it nearly equal, quantities, A» 

plays a major role in the computation of P» If this 

were a significant problem, and it is not in this example, 

programming precautions could be taken to minimize its 

effect, 

EXAMPLE 4.4. For our final example we chose to 

compute the near-optimal filter of Section B and compare 

it with the Kalman filter for the navigation system in 
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Example 4.3. Because the near-optimal filter does not 

have a simple interpretation in terms of a suboptimal gain# 

simulation of the error model of the navigation system, as 

in the example of Chapter III, was required. In other 

words, a covariance analysis was not possible. 

For N = 3, the near-optimal filter is given by 

(i = 1. 2) 

F^P? + p9F! + - P°H!H^P?/r^, P?(0) 

= F.x9 + P?H!(y. _ H.x9)/r., x9(o) 

-J 

i? = 

F.P^ + P^FÎ + - ̂ i"Pi^i/^i' Pi(0) 

= (F^ - P^HîHj/r^)xJ + C.jx9, xj(0) 

(F^ - PiH!H^/r^)x? + 2C.jX^, x?(0) 

= Pi(0) 

= 0 

= 0 

= 0 

where j = 1 when i = 2 and j = 2 when i = 1. 

For the simulations, the mean values chosen for the 

initial states were 

^1 '=/^2 = 

- 100 -| 

.0.125_ 

In Figure 4.3 4 is a portion of the results from a 

typical sample run. For each of the states at a particular 

time, the sample value is listed followed by the absolute 
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value of the estimation error obtained from the Kalman 

filter and the near-optimal filter for N = 1, 2, and 3. 

It is clear that none of the filters tracked the 

position states very well and the velocity states only 

slightly better. The important thing to note, in the 

context of our work here, is that the near—optimal filters 

did as well as the Kalman filter. This is an indication 

that the method has some potential, particularly in light 

of the computational savings which result for large-

dimensional problems. 
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b = 1,0 
PY(lO) = 0.458 
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0.00 2.00 6 .00 8.00 10.00 
Time 

Figure 4.3, Suboptimality of for Example 4.1 
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Figure 4.5. Suboptinality of for Example 4,1 vith decreased coupling 
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Figure 4,6. Suboptimalilty of for Example 4.1 with decreased coupling 
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Figure 4.7, Suboptimallty of for Example 4.2 
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Figure 4.8. Suboptimality of P for Example 4.2 
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Figure 4.9. Suboptlmality of P for Example 4.2 
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Figure 4,10, Suboptimality of P tor Example 4.2 with decreased coupling 
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Figure 4.12. Suboptimality of for Example 4.2 with decreased coupling 



www.manaraa.com

Figure 4.13. Filter performance for Example 4.3 



www.manaraa.com

95 

DT =0.010 RI = O.lOOOE-05 Q = 0.30000 01 

1.250 

TRACE 

2.500 

TRACE 

3.750 

TRACE 

5.000 

TRACE 

6.250 

TRACE 

7.500 

TRACE 

8.750 

TRACE 

10.000 

TRACE 

01 AG PSO 
0.4448160 06 
0.5262710 01 
0.444816D 06 
0.5262710 01 
0.8896430 06 

0.2855150 06 
0.9012660 01 
0.2855150 06 
0.9012660 01 
0.5710480 06 

0.2103080 06 
0.1276240 02 
0.2103080 06 
0.1276240 02 
0.4206410 06 

0.1665140 06 
0.165116D 02 
0.1665140 06 
0.1651160 02 
0.3330600 06 

0.1378700 06 
0.2025960 02 
0.1378700 06 
0.2025960 02 
0.2757810 06 

0.1177000 06 
0.2400560 02 
0.117700D 06 
0.2400560 02 
0.2354480 06 

0.1027560 06 
0.2774830 02 
0.1027560 06 
0.2774830 02 
0.2055670 06 

0.9126990 05 
0.3148570 02 
0.9126990 05 
0.3148570 02 
0.1826030 06 

01 AG PS2 
0.4428380 06 
0.5292710 01 
0.4428380 06 
0.5292710 01 
0.8856860 06 

0.2847000 06 
0.9042650 01 
0.2847000 06 
0.9042650 01 
0.5694180 06 

0.2098660 06 
0.1279240 02 
0.2098660 06 
0.127924D 02 
0.4197570 06-

0.1662370 06 
0.1654160 02 
0.1662370 06 
0.1654160 02 
0.3325070 06 

0.1376810 06 
0.2028960 02 
0.1376810 06 
0.2028960 02 
0.2754030 06 

0.1175630 06 
0.2403560 02 
0.1175630 06 
0.2403560 02 
0.2351730 06 

0.1026520 06 
0.2777820 02 
0.1026520 06 
0.2777820 02 
0.2053590 06 

0.9118880 05 
0.3151560 02 
0.9118880 05 
0.3151560 02 
0.1824410 06 

01 AG P 
0*4428380 06 
0.5292710 01 
0.4428380 06 
0.5292710 01 
0.8856860 06 

0.2847000 06 
0.9042650 01 
0.2847000 06 
0.9042650 01 
0.5694180 06 

0.2098660 06 
0.1279240 02 
0.2098660 06 
0.1279240 02 
O.4197570 06 

0.1662370 06 
0.1654160 02 
0.1662370 06 
0.1654160 02 
0.3325070 06 

0.1376810 06 
0.2028960 02 
0.1376810 06 
0.2028960 02 
0.2754030 06 

0.1175630 06 
0.2403560 02 
0.1175630 06 
0.2403560 02 
0.2351730 06 

0.102 6 520 06 
C.2777820 02 
0.102 652 0 06 
0.2777820 02 
0.2053590 06 

0.9118880 05 
0.3151560 02 
0.9118880 05 
0.315156D 02 
0.1824410 06 

OIA 
0.62186 
0.1658 
0.6218 
0.1658 
0.3440 

0.2288 
0.1523 
0.2288 
0.1523 
0.3504 

0.7090 
0.2134 
0.7090 
0.2134 
0.5687 

0.814 
0.1403 
0.81473 
0.14034 
0.44363 

0.54537 
0.60996 
0.54537 
0.60996 
0.23106 

0.25942 
0.20393 
0.25942 
0.20393 
0.92671 

0.97441 
0.56846 
0.97441 
0.56846 
0.30857 

0.30771 
0.13862 
0.30771 
0.13862 
0.89267 
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RI = 0. lOOOE-05 Q = 0.3000D 01 

Iso 01 AG PS2 01 AG P 01AG GO DIAG G1 DIAG G2 p 

|o 06 0. 4428380 06 0. 4428380 06 0. 6218620-16 0. 6933120-24 0.1074160-24 G. 1 

io 01 0. 5292710 01 0. 5292710 01 0. 1658180-14 0. 1122170-23 0.1503560-27 —« 9 
Eo 06 0. 4428380 06 0. 4428380 06 0. 6218620-16 0. 6933120-24 0.1074160-24 0. 9 

Io 01 0. 5292710 01 0. 5292710 01 0. 1658180-14 0. 1122160-23 0.1492410-27 0. 1 

BO 06 0. 8856860 06 0.8856860 06 0. 344073E-14 0. 3630960-23 0.2151320-24 

Io 06 0. 2847000 06 0. 2847000 06 0. 2288510-13 0. 3718720-21 0.9667000-24 G. 1 

pO 01 0. 9042650 01 0. 9042650 01 0. 1523400-12 0. 3970520-21 0.9281160-24 —. 6 
pD 06 0. 2847000 06 0. 2847000 06 0. 2288510-13 0. 3718710-21 0.9659830-24 0. 6 

ko 01 0. 9042650 01 0. 9042650 01 0. 1523400-12 0. 3970460-21 0.9248580-24 G. 5 

80 06 0. 5694180 06 0. 5694180 06 0, 35045IE-12 G. 1537340-20 0.3735660=23 

»0 06 0. 2098660 06 0. 2098660 06 0. 7090550-12 0. 2312300-19 0.2073740-21 0. 2 
ko 02 0. 1279240 02 0. 1279240 02 0. 2134900-11 0. 1226550-19 0.2036850-21 —« 1^ 
ko 06 0. 2098660 06 0. 2098660 06 0. 7090550-12 0. 2312270-19 0.2072460-21 G. 1 

ko 02 0. 1279240 02 0. 1279240 02 0. 2134900-11 G. 1226470-19 0.2032910-21 0. 5 

ko 06 0. 4197570 06- 0. 4197570 06 0. 568790E-11 0. 7077580-19 0.8215970-21 

ko 06 0. 1662370 06 0. 1662370 06 0. 8147300-11 0. 4608660-18 0.177573 0-19 0. 11 

|o 02 0. 1654160 02 0, 1654160 02 0. 1403420-10 0. 1476630-18 0.1037890-19 —• 4 
ko 06 0. 1662370 06 0. 1662370 06 0. 8147300-11 G. 4608510-18 0.1775050-19 0. 4: 

ÈO 02 0. 1654160 02 0. 1654160 02 0. 1403420-10 0. 1476380-18 0.1036640-19 G. 2^ 

po 06 0. 3325070 06 0. 3325070 06 0, 443631E-10 0. 1217020-17 0.5625320-19 

00 06 0. 1376810 06 0. 1376810 06 0. 5453730-10 0. 5076350-17 0.5961250-18 0. 9< 

60 02 0. 2028960 02 0. 2028960 02 0. 6099640-10 0. 1143680-17 0.2301500-18 —. 81 
[00 06 0. 1376810 06 0. 1376810 06 0. 5453730-10 0. 5076010-17 0.5959710-18 G. 8( 

^0 02 0. 2028960 02 0. 2028960 02 0. 6099640-10 0. 1143300-17 G. 2299620-18 0. 8' 
ko 06 0. 2754030 06 0. 2754030 06 0. 231067E-09 0. 1243930-16 0.1652210-17 

00 06 0. 1175630 06 0. 1175630 06 0. 2594250-09 0. 4081190-16 0.1085700-16 G. 3 
ko 02 0. 2403560 02 0. 2403560 02 0. 2039310-09 0. 7304200-17 0.2976270-17 —. V: 
po 06 0. 1175630 06 0. 1175630 06 0. 2594250-09 0. 4080750-16 0.1085500-16 G. 1: 
jso 02 G. 2403560 02 0. 2403560 02 0. 2039310-09 0. 7300700-17 0.2974510-17 0. 2-
80 06 0. 2351730 06 0. 2351730 06 0. 926714E-09 0. 9622430-16 0.2766280-16 

160 06 0. 1026520 06 0. 1026520 06 0. 9744150-09 0. 2790430-15 0.1287200-15 0. 1: 
po 02 0. 2777820 02 0. 2777820 02 0. 5684640-09 0. 4256820-16 0.2636050-16 2( 
Ko 06 0. 1026520 06 0. 1026520 06 0. 9744150-09 0. 2790030-15 0.1287020-15 0. 24 
po 02 0. 2777820 02 0. 2777820 02 0. 5684640-09 0. 4254480-16 0.2634870-16 0. 5i 
70 06 0. 2053590 06 G. 2053590 06 0. 308576E-08 0. 6431600-15 0.3101320-15 

ko 05 0. 9118880 05 G. 91188SD 05 0. 3077140-08 0. 1720960-14 0.1110120-14 0. 31 

70 02 0. 3151560 02 0. 3151560 02 0. 1386240-08 0. 2274110-15 0.1763460-15 3j 
190 05 0. 9118880 05 0. 9118880 05 0. 3077140-08 0. 1720690-14 0.1110000-14 0. 3j 
170 02 0. 3151560 02 0. 3151560 02 0. 1386240-08 G. 2272890-15 0.1762850-15 0. l] 
130 06 0. 1824410 06 0. 1824410 06 0. 892675E-08 G. 3896340-14 0.2572750-14 
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Q = 0.3000D 01 

PSI OFF 0 
0.1197940-10 
-.9229850-04 
0.9229860-04 
0.1881680-09 

0.1280890-08 
-.6259810-03 
0.6259860-03 
0.5966600-08 

0.2275800-07 
-.1920580-02 
0.192064B-02 
0.5117160-07 

0.1853010-06 
-.4280990-02 
0.4281330-02 
0.2455680-06 

OÎAG P 
.4428380 06 
.5292710 01 
.4428380 06 
.5292710 01 
0.8856860 06 

.2847000 06 
•9042650 01 
0.2847000 06 
0.904265D 01 
0.5694180 06 

0.2098660 06 
0.1279240 02 
0.2098660 06 
0.127924D 02 
0.4197570 06 

0.1662370 06 
0.1654160 02 
0.1662370 06 
0.1654160 02 
0.3325070 06 

0.1376810 06 
0.2028960 02 
0.1376810 06 
0.2028960 02 
0.2754030 06 

0.1175630 06 
0.2403560 02 
0.1175630 06 
0.2403560 02 
0.2351730 06 

0.102 6520 06 
0.2777820 02 
0.1026520 06 
0.2777820 02 
0.2053590 06 

0.9118880 05 
0.3151560 02 
0.9118880 05 
0.3151560 02 
0.1824410 06 

OIAG GO 
0.6218620-16 
0.1658180-14 
0.6218620-16 
0.1658180-14 
0.344073E-14 

0.2288510-13 
0.1523400-12 
0.2288510-13 
0.1523400-12 
0.350451E-12 

0.7090550-12 
0.2134900-11 
0.7090550-12 
0.2134900-11 
0.568790E-11 

0.8147300-11 
0.1403420-10 
0.8147300-11 
0.1403420-10 
0.443631E-10 

0.5453730-10 
0.6099640-10 
0.5453730-10 
0.6099640-10 
0.231067E-09 

0.2594250-09 
0.2039310-09 
0.2594250-09 
0.2039310-09 
0.926714E-09 

0.9744150-09 
0.5684640-09 
0.9744150-09 
0.5684640-09 
0.308576E-0S 

0.3077140-08 
0.1386240-08 
0.3077140-08 
0.1386240-08 
0.892675E-08 

OIAG G1 
0.6933120-24 
0.1122170-23 
0.6933120-24 
0.1122160-23 
0.3630960-23 

0.3718720-21 
0.3970520-21 
0.3718710-21 
0.397046D-21 
0.1537840-20 

0.2312300-19 
0.1226550-19 
0.2312270-19 
0.1226470-19 
0.7077580-19 

0.4608660-18 
0.1476630-18 
0.4608510-18 
0.1476380-18 
0.1217020-17 

0.5076350-17 
0.1143680-17 
0.5076010-17 
0.1143300-17 
0.1243930-16 

0.4081190-16 
0.7304200-17 
0.4080750-16 
0.7300700-17 
0.9622430-16 

0.2790430-15 
0.4256820-16 
0.2790030-15 
0.4254480-16 
0.6431600-15 

0.1720960-14 
0.2274110-15 
0.1720690-14 
0.2272890-15 
0.3896340-14 

OIAG G2 
0.1074160-24 
0.1503560-27 
0.1074160-24 
0.1492410-27 
0.2151320-24 

0.9667000-24 
0.9281160-24 
0.9659830-24 
0.9248580-24 
0.3785660-23 

0.2073740-21 
0.2036850-21 
0.2072460-21 
0.2032910-21 
0.8215970-21 

0.1775730-19 
0.1037890-19 
0.1775050-19 
0.1036640-19 
0.5625320-19 

0.5961250-18 
0.2301500-18 
0.5959710-18 
0.2299620-18 
0.1652210-17 

0.1085700-16 
0.2976270-17 
0.1085500-16 
0.2974510-17 
0.2766280-16 

0.1287200-15 
0.2636050-16 
0.1287020-15 
0.2634870-16 
0.3101320-15 

0.1110120-14 
0.1763460-15 
0.1110000-14 
0.1762850-15 
0.2572750-14 

0.9677640-06 
-.8009470-02 
0.8010890-02 
0.8460120-06 

0.3790530-05 
-.1340640-01 
0.1341110-01 
0.2350940-05 

0.1213180-04 
-.2076960-01 
0.2078260-01 
0. 5617700-C5 

0.3342900-04 
-.3039280-01 
0.3042440-01 
0.1200200-04 

P OFF 0 
0.1859420-
-.9436500-
0.9436500-
0.5126240-

0.9929160-
-.6329120-
0.6329120-
0.110893 

0.401042 
-.193486 
0.193486 
0.174855 

0.130659 
-.430516 
0.4305160-
0.2387820-

0.2141220-
-.8046340^ 
0.8046340-
0.3043080-

0.3334610-
-.1345950-
0. 1345950-
0. 3670640-

0.597706 
-.208438 
0.208438 
0.430105 

0.1016750 
-.304956 
0.3049560 
0. 493907 
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Figure 4.14. Filter performance for Example 4.4 
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STATE 1 
TIME = 0.0 
SAMPLE -0.1955E 04 

TIME = 1.250 
SAMPLE -0.1955E C4 
ERRK 0.8622E 03 
ERRCC 0.8623E 03 
ERRCI 0.8623E 03 
ERRC2 0.8623E 03 

TIME = 2.500 
SAMPLE -0.1955E 04 
ERRK 0.9839E 03 
ERRCC 0.9839E 03 
ERRCI 0.9839E 03 
ERRC2 0.9839E 03 

TIME = 3.750 
SAMPLE -0.1959E 04 
ERRK 0.4123E 03 
ERRCC 0.4123E 03 
ERRCI 0.4123E 03 
ERRC2 0.4123E 43 

TIME = 5.00C 
SAMPLE -0.1962E 04 
ERRK 0.3455E C3 
ERRCC 0.3455E 03 
ERRCI 0.3455E 03 
ERRC2 0.3455E 03 

TIME = 6.250 
SAMPLE -0.1965E 04 
ERRK 0.4183E 03 
ERRCO 0.4183E 03 
ERRCI 0.4183E 03 
ERRC2 Û.4I83E 03 

TIME = 7.500 
SAMPLE -0.1967E 04 
ERRK 0.7099E 03 
ERRCC 0.7099E 03 
ERRCI 0.7099E 03 
ERRC2 Û.7099E 03 

TIME = 8.749 
SAMPLE -0.1969E 04 
ERRK 0.5977E 03 
ERRCC 0.5977E 03 
ERRCI 0.5977E 03 
ERRC2 0.5S77E 03 

TIME = 9.999 
SAMPLE -0.1970E 04 
ERRK 0.5509E 03 
ERRCO 0.5509E 03 
ERRCI 0.5509E 03 
ERRC2 0.5509E 03 

STATE 2 STATE 3 STATE 4 

0. 1118E 01 -0. 7547E 03 -0.1379E 01 

0. 9449E 00 —0. 7568E 03 -0.2531E 01 
0. 8187E 00 0. 5155E 02 0.2653E 01 
0. 8187E 00 0. 5154E 02 0.2653E 01 
0. 8187E 00 0. 5154E 02 0.2653E 01 
0. 8187E 00 0. 5154E 02 0.2653E 01 

0. 2159E 01 — 0. 7587E 03 -0.1522E 01 
0. 2287E 01 0. 4382E 03 0.1638E 01 
0. 2287E 01 0. 4382E 03 0.1638E 01 
0. 2287E 01 0. 4382E 03 0.1638E 01 
0. 2287E 01 0. 4382E 03 0.1638E 01 

0. 3617E 01 —0. 7613E 03 -0.1479E 01 
0. 3723E 01 0. 5585E 03 0.1592E 01 
0. 3723E 01 0. 5585E 03 0.1592E 01 
0. 3723E 01 0. 5585E 03 0.1592E 01 
0. 3723E 01 0. 5585E 03 0.1592E 01 

0. 1202E 01 — 0. 7614E 03 0.1628E 01 
0. 1298E 01 0. 5805E 03 0.1514E 01 
0. 1298E 01 0. 5805E 03 0.1514E 01 
0. 1298E 01 0. 5805E 03 0.1514E 01 
0. 1298E 01 0. 5805E 03 G.1514E 01 

0. 2649E 01 —0. 7576E 03 0.4526E 01 
0. 2769E 01 0. 6121E 03 0.4415E 01 
0. 2769E 01 0. 6121E 03 0.4415E 01 
0. 2769E 01 0. 6121E 03 0.4415E 01 
0. 2769E 01 0. 6121E 03 0.4415E 01 

0. 1965E 01 —0. 7516E 03 0.5530E 01 
0. 2206E 01 0. 7508E 03 0.5468E 01 
0. 2206E 01 0. 7508E 03 0.546BE 01 
0. 2206E 01 0. 7508E 03 0.5468E 01 
0. 2206E 01 0. 7508E 03 0.5468E 01 

0. 8146E 00 —0. 7447E 03 0.5701E 01 
0. 9799E 00 0. 8384E 03 0.5691E 01 
0. 9799E 00 0. 8384E 03 0.5691E 01 
0. 9799E 00 0. 8384E 03 0.5691E 01 
0. 9799E 00 0. 8384E 03 0.5691E 01 

0. 1C47E 01 -0. 7371E 03 0.4986E 01 
0. 1134E 01 0. 8521E 03 0.4976E 01 
0. 1134E 01 0. 8521E 03 0.4976E 01 
0. 1134E 01 0. 8521E 03 0.4976E 01 
0. 1134E 01 0. 8521E 03 0.4976E 01 
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V. CONCLUSION 

In the preceding chapters we have proposed new 

approximate nonlinear filtering and smoothing algorithms 

based upon a synthesis of ideas in optimal control theory, 

large-scale systems analysis, and Bayesian estimation 

theory. 

The principal advantage of the method is that for 

large-scale systems, significant computational savings 

can be obtained over the computational requirements of 

other approximate algorithms. From the preliminary 

computational studies made for the examples presented, 

we might expect that the method will perform best when 

the composite system has light coupling between the sub­

systems and/or when the nonlinearities in the system are 

small. 

Another advantage of the method is that the smoothing 

solution is a natural by-product in the derivation. The 

nonlinear smoothing problem is a difficult one and most 

previous methods resorted to merely linearizing the system 

and applying the linear smoothing algorithm. The smoothing 

problem in general requires a great deal of computation, 

hence the decoupling property of our method makes it 

particularly attractive. 

Other attractions of the method are that only linear 
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and Riccati type equations need be solved and that a 

qualitative estimate can be obtained for the performance 

of the algorithm. 

As in the nonlinear problem, the computational savings 

can be significant for the linear case when dealing with 

large-dimensional systems. The approach of Haddad emd 

Cruz [14] is attractive because many systems may be 

naturally viewed as consisting of two interconnected 

subsystems, the results have a simple interpretation in 

terms of a suboptimal gain, and a quantitative estimate 

of the suboptimality of the algorithm can be obtained. 

The modal-trajectory approach to the linear problem, 

on the other hand, enables one to break the problem apart 

into more than two subsystems. This results in perhaps 

additional computational savings as well as a decoupled 

solution to the smoothing problem. 

On the debit side for the e-coupling approach, the 

algorithm has no advantage over the Kalman filter for 

small linear problems. For small nonlinear problems, the 

only justification for its use is that if a sufficient 

number of terms in the series are computed, better 

performance can be obtained than that achieved with other 

methods. It is expected that usually only two or three 

terms will be needed. 

The filter is tedious to design. Somewhat more hand 
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calculation is needed than in, say, the extended Kalman 

filter to specify the equations in the algorithm for a 

particular application. 

Perhaps a more serious drawback is that no intuitive 

interpretation can be made in terms of a suboptimal gain 

or error covariance matrix. This perhaps hinders the 

evaluation of the performance of the filter. However, to 

some degree this is a problem common to the other approxi­

mate methods as well. 

Several investigations appear promising and interest­

ing related to this study. From a practical viewpoint, 

perhaps the first requirement is a full computational study 

of properties of these algorithms on a large-scale system 

problem. This should be done coincident with a computa­

tional study of the other approximate nonlinear algorithms 

for comparative purposes. 

Clearly, a quantitative measure of the quality of 

performance of the algorithms is desirable. One might 

conjecture that the way to do this is to establish a 

bound on the remainder term for the series expansion for 

the cost functional. That does not appear to be a trivial 

problem. 

Along these same lines, an analysis would seem desir­

able of the convergence properties of the solution of the 

modal-trajectory TPBVP for e on the interval [o,l]. 



www.manaraa.com

101 

We have used the terms light coupling and small 

nonlinearity. An investigation establishing a quanti­

tative definition of those terms within the context of the 

problems studied here would be of great practical value. 

In Joseph [28] and Pentecost [l9] a method was 

proposed for linear filtering which utilized a partitioning 

of a system into subsystems. A study of the relationship 

of that method with the present one would be of interest. 

Throughout this work we have indicated that the 

estimation procedure would be implemented digitally. In 

many, perhaps most, applications it would be more desir­

able to convert the continuous problem to a discrete one 

and perform discrete estimation rather than convert the 

continuous estimation procedure to a discrete form. 

Given the foundation presented here, it should be a simple 

matter to derive the discrete analogy to the algorithms 

given here. 
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VIII. APPENDIX 

The purpose of this Appendix is to state for refer­

ence purposes the linear estimation problem and summarize 

its solution, the Kalman filter. 

Suppose that a representation of a dynamical system 

is given by the (formal) stochastic differential equation 

x(t) at F(t)x(t) + w(t), t > t^ (A.l) 

where x(t) is the n-vector state and F(*) is an n x n 

known continuous matrix time-function. Continuous measure­

ments are taken via 

y(t) = H(t)x(t) + v(t), t > t^ (A,2) 

where y(t) is the m-vector measurement and H(») is a 

known m x n continuous matrix time-function. {w(t), t > t^j 

and {v(t), t > t^} are zero-mean gaussian white noise 

processes with 

cov{w(t^),w(t2)} = Q(t^)&(t^ - tg), 

cov{v(t^),v(t2)} = H(t^)8(t^ - t^). (A,3) 

The initial state x(t^) is normally distributed, x(t^)'-^ 

N^,P(t^)) with x(t^), {w(t)}, and £v(t)} independent. 

The problem then is, given the above model of the 
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dynamical system, determine the minimum variance estimate 

of the state at any time t > t^ given the measurement data 

{y('t), t^ < ̂  < t]. The solution to this problem is given 

by the well-known Kalman-Bucy filter which was first 

derived (in the continuous form) by Kalman and Bucy in 

1961 [6]. 

The Kalman-Bucy filter for the continuous system 

(A.l) - (A,2) is given by the differential equations 

x*(t) = F(t)x*{t) + P(t)H'(t)R-l(t)[y(t) - H(t)x*(t)], 

x*(t^) =IJL, t > t^ (A.4) 

where P(t) satisfies the matrix Riccati equation 

P(t) « F(t)P(t) + P(t)F*(t) + Q(t) - P(t)H*(t)R"^H(t)P(t), 

t > t (A,5) 
— o 

with the initial condition the covariance matrix of the 

initial state, P(t^), x*(t) is the minimum variance 

estimate of the state at time t and P(t) is the covariance 

matrix of the estimation error resulting from x*(t). 

Solution of the linear equation (A.4) with the Riccati 

equation (A,5) as measurements are obtained produces the 

minimum variance estimate of the state as a linear operation 

on the measurement data. 
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